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Abstract

We consider some fundamental generalized Mordell–Tornheim–Witten (MTW) zeta-
function values along with their derivatives, and explore connections with multiple-zeta
values (MZVs). To achieve these results, we make use of symbolic integration, high pre-
cision numerical integration, and some interesting combinatorics and special-function
theory. Our original motivation was to represent previously unresolved constructs such
as Eulerian log-gamma integrals. Indeed, we are able to show that all such integrals
belong to a vector space over an MTW basis, and we also present, for a substantial
subset of this class, explicit closed-form expressions. In the process, we significantly
extend methods for high-precision numerical computation of polylogarithms and their
derivatives with respect to order.
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1 Introduction

We define an ensemble of extended Mordell–Tornheim–Witten (MTW) zeta function values
[19, 35, 23, 24, 5, 12, 36, 37]. There is by now a huge literature on these sums; in part
because of the many connections with fields such as combinatorics, number theory, and
mathematical physics.

Unlike previous authors we include derivatives with respect to the order of the terms.
We also investigate interrelations between MTW evaluations, and explore some deeper
connections with multiple-zeta values (MZVs). To achieve these results, we make use of
symbolic and numerical integration, special function theory and some less-than-obvious
combinatorics and generating function analysis.

Our original motivation was that of representing previously unresolved constructs such
as Eulerian log-gamma integrals. Indeed, we consider an algebra having an MTW basis
together with the constants π, 1/π, γ, log 2π and the rationals, and show that every log-
gamma integral

LGn :=

∫ 1

0
logn Γ(x) dx.

is an element of said algebra (that is, a finite superposition of MTW values with fundamental-
constant coefficients). That said, the focus of our paper is the relation between MTW sums
and classical polylogarithms. It is the adumbration of these relationships that makes the
study significant.

The organization of the paper is as follows. In Section 2 we introduce an ensemble D
capturing the values we wish to study and we provide some effective integral representations
in terms of polylogarithms on the unit circle. In Section 2.1 we introduce a subensemble
D1 sufficient for the study log gamma integrals, while in Section 2.2 we provide a first few
accessible closed forms. In Section 3 we provide generating functions for various derivative
free MTW sums and provide proofs of results first suggested by numerical experiments
described in the sequel. In Section 4 we provide the necessary polylogarithmic algorithms
for computation of our sums/integrals to high precision (400 digits up to 3100 digits). To
do so we have to first provide similar tools for the zeta function and its derivatives at
integer points. These methods are of substantial independent value and will be pursued in
a future paper.

In Section 5 we prove various reductions and interrelations of our MTW values (see
Theorems 7, 8, 9 and 10). In Theorem 11 of Section 6, we show how to evaluate all log
gamma integrals LGn for n = 1, 2, 3 . . ., in terms of our special ensemble of MTW values,
and we confirm our expressions to at least 400-digit precision. In Section 7 we describe
two rigorous experiments designed to use integer relation methods [13] to first explore the
structure of the ensemble D1 and then to begin to study D. Finally, in Section 8 we make
some summary remarks.
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2 Mordell–Tornheim–Witten ensembles

The multidimensional Mordell–Tornheim–Witten (MTW) zeta function

ω(s1, . . . , sK+1) =
∑

m1,...,mK > 0

1

ms1
1 · · ·m

sK
K (m1 + · · ·+mK)sK+1

(1)

enjoys known relations [29], but remains mysterious with respect to many combinatorial
phenomena, especially when we contemplate derivatives with respect to the si parameters.
We refer to K + 1 as the depth and

∑k+1
j=1 sj as the weight of ω.

A previous work [5] introduced and discussed an apparently novel generalized MTW
zeta function for positive integers M,N and nonnegative integers si, tj—with constraints
M ≥ N ≥ 1—together with a polylogarithm-integral representation:

ω(s1, . . . , sM | t1, . . . , tN ) :=
∑

m1,...,mM,n1,...,nN > 0∑M
i=1

mi=
∑N

j=1
nj

M∏
i=1

1

mi
si

N∏
j=1

1

njtj
(2)

=
1

2π

∫ 2π

0

M∏
i=1

Lisi

(
eiθ
) N∏
j=1

Litj

(
e−iθ

)
dθ. (3)

Here the polylogarithm of order s denotes Lis(z) :=
∑

n≥1 z
n/ns and its analytic extensions

[28] and the (complex) number s is its order.
It is important to note that if some parameter(s) is (are) zero, there are convergence

issues with this integral representation. One may either use principal-value calculus, or
use an alternative representation such as (11) below. When N = 1 the representation (3)
devolves to the classic MTW form, in the sense that

ω(s1, . . . , sM+1) = ω(s1, . . . , sM | sM+1). (4)

In the present study we shall require a wider MTW ensemble involving outer derivatives,
according to the notation

ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
:=

∑
m1,...,mM,n1,...,nN > 0∑M

i=1
mi=

∑N
j=1

nj

M∏
i=1

(− logmi)
di

mi
si

N∏
j=1

(− log nj)
ej

njtj

=
1

2π

∫ 2π

0

M∏
i=1

Li(di)si

(
eiθ
) N∏
j=1

Li
(ej)
tj

(
e−iθ

)
dθ, (5)

where the s-th outer derivative of a polylogarithm is denoted Li
(d)
s (z) :=

(
∂
∂s

)d
Lis(z).

The aforementioned work [5] represents such numbers differently but equivalently—
by placing the d, e parameters as a string subscript on ω. (We opt presently for the
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(M + N) × 2 matrix parameterization because some recondite expressions will accrue for
which the matrix structure is somewhat more readable.) We emphasize that all ω are real
since we integrate over a full period or more directly since the summand is real. Consistent
with earlier usage, we now refer to M +N as the depth and

∑M
j=1(sj +dj) +

∑N
k=1(tk + ek)

as the weight of ω.
To summarize thus far, we consider an MTW ensemble, meaning the set of numbers

D :=

{
ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
: si, di, tj , ej ≥ 0; M ≥ N ≥ 1,M,N ∈ Z+

}
.

(6)

2.1 Important subensembles

We shall have occasion, in our resolution of log-gamma integrals especially, to contemplate
MTW constructs possessed only of parameters 1 or 0. We define U(m,n, p, q) to vanish if
mn = 0; otherwise if m ≥ n we define

U(m,n, p, q) :=
1

2π

∫ 2π

0
Li1

(
eiθ
)m−p

Li
(1)
1

(
eiθ
)p

Li1

(
e−iθ

)n−q
Li

(1)
1

(
e−iθ

)q
dθ

= ω

(
1m | 1n

1p0m−p | 1q0n−q

)
, (7)

while for m < n we swap both (m,n) and (p, q) in the integral and the ω-generator. We
then denote a particular subensemble D1 ⊂ D as the set

D1 := {U(m,n, p, q) : p ≤ m ≥ n ≥ q } .

Furthermore, another subensemble D0 ⊂ D1 ⊂ D is a derivative-free set of MTWs of the
form

D0 := {U(M,N, 0, 0) : M ≥ N ≥ 1} ,

that is to say, an element of D0 has the form ω(1M | 1N ), which can be thought of as an
ensemble member as in (5) with all 1’s across the top and all 0’s across the bottom. As
this work progressed it became clear that we should also treat

D0(s) := {Us(M,N, 0, 0) : M ≥ N ≥ 1} ,

in which an element of D0(s) has the form ω(sM | sN ), for s = 1, 2, . . .. Of course D0(1) =
D0.

For economy of notation, we shall sometimes write

Us(M,N) := Us(M,N, 0, 0).
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2.2 Closed forms for certain MTWs

We consider first some relatively elementary evaluations. For N = 1 in the definition (5)
we have the following:

ω(r | s) = ζ(r + s), (8)

ω(r1, . . . , rM | 0) =
M∏
j=1

ζ(rj) (9)

ω(r, 0 | s) = ω(0, r | s) = ζ(s, r), (10)

where this last entity is a multiple-zeta value (MZV), some instances of which—such as
ζ(6, 2) have never been resolved in closed form [14] and are believed irreducible, see also
[10, 36, 37]. Such beginning evaluations use simple combinatorics; later in Section 5 we
shall see much more sophisticated combinatorics come into play.

When we are derivative-free and N = 1, so that we are contemplating the original,
classic MTW (1), there is a useful pure-real integral available as an alternative to integral
representation (3). In fact,

ω(s1, s2, . . . , sM | t) =
1

Γ(t)

∫ ∞
0

xt−1
M∏
j=1

Lisj (e
−x) dx. (11)

It is intriguing that this real representation can be split into a series plus a numerically
easier incomplete Gamma function integral, as discussed in [22]. Specifically, with a free
parameter λ, one has

ω(s1, s2, . . . , sM | t) =
1

Γ(t)

∫ λ

0
xt−1

M∏
j=1

Lisj (e
−x) dx (12)

+
1

Γ(t)

∑
m1,...,mM≥1

Γ(t, λ(m1 + · · ·+mM ))

ms1
1 · · ·m

sM
M (m1 +m2 + · · ·mM )t

,

which recovers the full integral as λ→∞ (11).
But numerics aside, there are interesting symbolic machinations that employ (11). For

example, since

Li0(z) =
z

1− z
,

we have a 1-parameter MTW value

ω(0, 0, 0, 0 | t) =
1

Γ(t)

∫ ∞
0

xt−1

(ex − 1)4
dx = − ζ(t) +

11

6
ζ(t− 1)− ζ(t− 2) +

1

6
ζ(t− 3),

certainly valid for t > 4. It is amusing and instructive that multidimensional analytic
continuation is patently nontrivial. Indeed, the analytic continuation for t→ 0 here appears
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to be ω(0, 0, 0, 0 | 0)
?
= 251

720 , and yet from the zeta-product formula previous we might infer

instead ω(0, 0, 0, 0 | 0) = ζ(0)4
?
= 1

16 . This shows that analytic continuation of MTWs (as
indeed with MZVs) must be performed carefully and rigorously [26, 29, 33].

At any rate, it can be shown, via these definite-integration techniques or sheer combi-
natorics, that when the argument t is in its region of absolute convergence, we have the
attractive closed form

ω(0M | t) =
1

(M − 1)!

M∑
q=1

s(M, q) ζ(t− q + 1), (13)

where the s(M, q) are the Stirling numbers of the first kind [32] as discussed prior to (77).

3 Resolution of all U(M,N) and more

Whereas our previous section exhibits closed forms for N = 1 (i.e. some classic MTW
forms of the type (4)), there is an important class of resolvable MTWs where N is allowed
to roam freely.

3.1 An exponential generating function for U(M,N)

Consider the subensemble D0 from Section 2.1; that is, the MTW is derivative-free with all
1’s across the top row. The following results, which were experimentally motivated as we
see later—provide a remarkably elegant generating function for U(m,n) := U(m,n, 0, 0).

Theorem 1 (Generating function for U). We have a formal generating function for U as
defined by (7) with p, q = 0; namely,

V(x, y) :=
∑
m,n≥0

U(m,n)
xm yn

m!n!
=

Γ(1− x− y)

Γ(1− x)Γ(1− y)
. (14)

Proof. To see this starting with the integral form in (7), we exchange integral and summa-
tion and then make an obvious change of variables to arrive at

V(x, y) =
2−x−y+1

π

∫ π/2

0
(cos θ)−x−y cos ((x− y) θ) dθ. (15)

However, for Re a > 0 [32, Equation (5.12.5)] records the beta function evaluation:∫ π/2

0
(cos θ)a−1 cos(bθ) dθ =

π

2a
1

aB
(
1
2(a+ b+ 1), 12(a− b+ 1)

) . (16)

On setting a = 1− x− y, b = x− y in (16) we obtain (14).
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Note that setting y = ±x in (14) leads to two natural one dimensional generating
functions. For instance

V(x,−x) =
∑
m,n≥1

(−1)n
(
m+ n

n

)
U(m,n)

xm+n

(m+ n)!
=

sin(πx)

πx
. (17)

Example 1. Theorem 1 makes it very easy to evaluate U(m,n) symbolically as the fol-
lowing Maple squib illustrates.

UU := proc (m, n) local x, y, H;

H := proc (x,y) ->GAMMA(x+y+1)/(GAMMA(x+1)*GAMMA(y+1));

subs(y=0,diff(subs(x=0,diff(H(-x,-y),‘$‘(x, n))),‘$‘(y, m)));

value(%) end proc

For instance, UU(5,5) returns:

9600π2ζ (5) ζ (3) + 600 ζ2 (3)π4 +
77587

8316
π10 + 144000 ζ (7) ζ (3) + 72000 ζ2 (5) . (18)

This can be done in Maple on a current Lenovo in a fraction of a second, while the 61
terms of U(12, 12) were obtained in 1.31 seconds and the 159 term expression for U(15, 15)
took 14.71 seconds and to 100 digits has numerical value of

8.8107918187787369046490206727767666673532562235899290819291620963 (19)

95561049543747340201380539725128849× 1031.

This was fully in agreement with our numerical integration scheme of the next section. ♦

The log-sine-cosine integrals given by

Lscm,n (σ) :=

∫ σ

0
logm−1

∣∣∣∣2 sin
θ

2

∣∣∣∣ logn−1
∣∣∣∣2 cos

θ

2

∣∣∣∣ dθ (20)

have been considered by Lewin, [27, 28] and in physical applications, see for instance [25].
From the form given in [11], Lewin’s result can be restated as

L(x, y) :=

∞∑
m,n=0

2m+n Lscm+1,n+1 (π)
xm

m!

yn

n!
= π

(
2x

x

)(
2y

y

)
Γ (1 + x) Γ (1 + y)

Γ (1 + x+ y)
. (21)

This is closely linked to (14), see also [34]. Indeed, we may rewrite (21) as

L(x, y)V(−x,−y) = π

(
2x

x

)(
2y

y

)
. (22)
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3.2 An exponential-series representation of the generating function V

To proceed with analyses on the generating function V(x, y), we recall expansions of the
Gamma function itself. To this end, we note from [27, 32] the classical formula

log Γ(1− z) = γz +
∑
n>1

ζ(n)
zn

n
, (23)

e−γzΓ(1− z) = exp

{∑
n>1

ζ(n)zn

n

}
,

everything being convergent for |z| < 1. This leads immediately to a powerful exponential-
series representation for our generating function

V(x, y) =
Γ(1− x− y)

Γ(1− x)Γ(1− y)
= exp

{∑
n>1

ζ(n)

n
((x+ y)n − xn − yn)

}

= exp

{∑
n>1

ζ(n)

n

n−1∑
k=1

(
n

k

)
xkyn−k

}
. (24)

These combinatorics lead directly to a resolution of the D0 ensemble, in the sense of casting
every U(M,N) is a finite, closed form:

Theorem 2 (Evaluation of U(M,N)). For any integers M ≥ N ≥ 1 we have that

U(M,N) = ω(1M | 1N ) ∈ D0

lies in the ring generated as

R := 〈Q ∪ {π} ∪ {ζ(3), ζ(5), ζ(7), . . . }〉 .

In particular, for M ≥ N , and setting U(M, 0) := 1, the general expression is:

U(M,N) = M !N !

N∑
n=1

1

n!

∑
j1+···+jn=M
k1+···+kn=N

n∏
i=1

(ji + ki − 1)!

ji! ki!
ζ(ji + ki).

Hence, any such U element is expressible in terms of odd zeta values, rationals, and the
constant π, with every zeta product involved having weight M +N .1

Proof. All results follow from symbolic Taylor expansion of the exponential form (24); that
is, denote by Q the quantity in the braces { } of the exponent in (24). Then inspection of
exp{Q} = 1 +Q+Q2/2! + . . . gives a finite form for a coefficient U(M,N).

1We refer to a ring, not a vector space over ζ values, as it can happen that powers of a ζ can appear;
thus we need closure under multiplication of any generators.
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Actually, there is a second proof that again connects the present theory with log-sine
integrals:

Proof. (Alternative proof of Theorem 2) From the logarithmic form of Li1 (61), we have

U(M,N) =
(−1)M+N

2π
× (25)∫ 2π

0

(
log

(
2 sin

t

2

)
− (π − t)

2
i

)M (
log

(
2 sin

t

2

)
+

(π − t)
2

i

)N
dt.

Now, upon expanding the integrand we can cast this U as a finite superposition of log-sine
integrals. Specifically, from [16] we employ

Ls
(k)
n+k+1(2π) := −

∫ 2π

0
tk logn

(
2 sin

(
t

2

))
dt.

Indeed, Borwein and Straub [16] provide a full generating function:

Ls
(k)
n+k+1(2π) = −2π(−i)k

(
∂

∂u

)k ( ∂
∂λ

)n+k+1

eiπu
(

λ

λ/2 + u

)
|{u,λ}={0,0},

from which provably closed form computation becomes possible. The rest of the proof can
follow along the lines of the first proof; namely, one only need inspect the exponential-series
expansion for the combinatorial bracket.

Example 2 (Sample U values). Exemplary evaluations are

U(4, 2) = ω(1, 1, 1, 1 |1, 1) = 204 ζ(6) + 24 ζ(3)2,

U(4, 3) = ω(1, 1, 1, 1 |1, 1, 1) = 6π4ζ(3) + 48π2ζ(5) + 720 ζ(7),

U(6, 1) = ω(1, 1, 1, 1, 1, 1 |1) = 720 ζ(7),

the latter consistent with a general evaluation that can be achieved in various ways,

U(M, 1) = ω(1M | 1) = M ! ζ(M + 1), (26)

valid for all M = 1, 2, . . .. Note that all terms in each decomposition have the same weight
M +N (seven in the final two cases). ♦

3.3 Sum rule for the U functions

Remarkably, extreme-precision numerical experiments as detailed in a later section discov-
ered a unique sum rule amongst U functions with a fixed even order M + N . Eventually,
we were led to by such numerical discoveries to prove:
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Theorem 3. (Sum rule for U of even weight) For even p > 2 we have

p−2∑
m=2

(−1)m
(
p

m

)
U(m, p−m) = 2p

(
1− 1

2p(p+ 1)Bp

)
U(p− 1, 1), (27)

where Bp is the p-th Bernoulli number.

Proof. Equating powers of x on each side of the contraction V(x,−x) (relation (17)), and
using the known evaluation U(p− 1, 1) = (p− 1)! ζ(p) together with the Bernoulli form of
ζ(p) (given as relation (65)), the sum rule is obtained.

Example 3 (Theorem 3 for weight M + N = 20). For M + N = 20, the theorem gives
precisely the numerically discovered relation (133). As we shall see, empirically it is the
unique such relation at that weight. An idea as to the rapid growth of the sum-rule
coefficients is this: For weight M +N = 100, the integer relation coefficient of U(50, 50) is
even, and exceeds 7× 10140; note also (26). ♦

3.4 Further conditions for ring membership

For more general real c > b, the integral representation

ω(1a 0b | c) =
(−1)a+c−1

Γ(c)

∫ 1

0

(1− u)b−1

ub
logc−1(1− u) loga udu, (28)

is finite and we remind ourselves that the a ones and b zeros can be permuted in any way.
While such integrals are covered by Theorem 10 below, its special form allows us to show
there is a reduction of (28) entirely to sums of one-dimensional zeta products—despite the
comment in [28, §7.4.2]—since we may use the partial derivatives of the beta function,
denoted Ba,c−1, to arrive at:

Theorem 4. For non-negative integers a, b, c with c > b, the number ω(1a 0b | c) lies in
the ring R from Theorem 2, and so reduces to combinations of ζ values.

Proof. One could proceed using exponential-series methods as for Theorem 2 previous, but
this time we choose to use Gamma-derivative methods, in a spirit of revealing equivalence
between such approaches. From (28) we have, formally,

(−1)a+c−1Γ(c)ω(1a 0b | c) = lim
u→−b

∂

∂v(c−1)

{
∂

∂ua
Γ(u+ 1)Γ(v)

Γ(u+ v + 1)

}
v=b

(29)

The analysis simplifies somewhat on expanding (1−u)b−1/ub by the binomial theorem. so
that the ω value in question is a finite superposition of terms

I(a, b, c) :=

∫ 1

0

logc(1− u) loga u

ub
du = lim

u→−b

∂

∂vc

{
∂

∂ua
Γ(u+ 1)Γ(v)

Γ(u+ v + 1)

}
v=1

. (30)
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Thence, we obtain the asserted complete reduction to sums of products of one-dimensional
zeta functions via the exponential-series arguments of the previous section or by appealing
to known properties of poly-gamma functions [16], [27, §7.9.5] and [31, §5.15]. More details
can be found in [10, pp. 281–282] and [27, §7.9.2].

Remark 1. We note that [27, (7.128)] give I(2, 1, 2) = 8 ζ (5)− 2
3 ζ (3)π2 and an incorrect

value for I(3, 1, 2) = 6 ζ2 (3)− 1
105 π

6. ♦

Example 4. Representative evaluations are

ω(1, 1, 1, 0, 0 | 3) = (π2 − 12) ζ(3)− 3 ζ(3)2 − 18 ζ(5) + π2 +
π4

12
+

π6

210
, (31)

and

ω(1, 1, 0, 0, 0 | 5) =

(
7

4
− 11π2

12
− π4

36

)
ζ(3) +

9ζ(3)2

2
+

29ζ(5)

2
− 2π2ζ(5)

3
(32)

+ 10ζ(7)− π4

16
− π6

144
.

Now, not all terms have the same weight. ♦

3.5 The subensemble D0(s)

Given the successful discovery of V in Section 3.2, we turn to D0(s) from Section 2.1. We
define Us(0, 0) = 1 , Us(m,n) for s = 1, 2, 3, . . . to vanish if m > n = 0; otherwise if m ≥ n
we set

Us(m,n) :=
1

2π

∫ 2π

0
Lis

(
eiθ
)m

Lis

(
e−iθ

)n
dθ = ω

(
sm | sn
0m | 0n

)
. (33)

That is, we consider derivative free elements of D of the form ω(sM | sN ). An obvious
identity is

Us(1, 1) = ζ(2s). (34)

Likewise

Us(2, 1) = ω(s, s, s), (35)

which is evaluable by Theorem 7 and for which classical closed forms are recorded in [23,
Eqns (1.20) and (1.21)]. Likewise, Us(n, 1) is evaluable for positive integer n.

For p = 2, we obtain a corresponding exponential generating function

V2(x, y) :=
∑
m,n≥0

U2(m,n)
xm yn

m!n!
. (36)
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Whence, summing and exchanging integral and sum as with p = 1, we get

V2(ix, iy) :=
1

2π

∫ 2π

0
e(y−x))Cl2(θ) cos

((
2π2 + 3 θ2 − 6π θ

)
12

(y + x)

)
dθ (37)

+ i
1

2π

∫ 2π

0
e(y−x))Cl2(θ) sin

((
2π2 + 3 θ2 − 6π θ

)
12

(y + x)

)
dθ

where Cl2(θ) := −
∫ θ
0 log

(
2
∣∣sin t

2

∣∣) dt is the Clausen function [28, Ch. 4].
While it seems daunting to place this in fully closed form, we can evaluate V2(x, x). It

transpires, in terms of the Fresnel integrals S and C [32, §7.2(iii)], to be

2π V2(ix, ix) = 2

√
π

x

(
cos

(
xπ2

6

)
C
(√
πx
)

+ sin

(
xπ2

6

)
S
(√
πx
))

(38)

+ i 2

√
π

x

(
cos

(
xπ2

6

)
S
(√
πx
)
− sin

(
xπ2

6

)
C
(√
πx
))

.

On using the series representations [32, Eq. (7.6.4) & (7.6.6)] we arrive at:

Re V2(ix, ix) = cos

(
xπ2

6

) ∞∑
n=0

(−1)n π4n

22n+2 (2n)! (4n+ 1)
x2n (39)

+ sin

(
xπ2

6

) ∞∑
n=0

(−1)n π4n+2

22n+3 (2n+ 1)! (4n+ 3)
x2n+1,

and

Im V2(ix, ix) = − sin

(
xπ2

6

) ∞∑
n=0

(−1)n π4n

22n+2 (2n)! (4n+ 1)
x2n (40)

+ cos

(
xπ2

6

) ∞∑
n=0

(−1)n π4n+2

22n+3 (2n+ 1)! (4n+ 3)
x2n+1.

We note that ReV2(ix, ix) is an even function and ImV2(ix, ix) is odd. Then, on comparing
(36) with ix = iy to (39) or (40) we arrive that:

Theorem 5. (Sum rule for U2) For each integer p ≥ 1, there are explicit positive rational
numbers qp such that

2p−1∑
m=1

(
2p

m

)
U2(m, 2p−m) = (−1)p q2p π

4p, (41)

2p∑
m=1

(
2p+ 1

m

)
U2(m, 2p+ 1−m) = (−1)p q2p+1 π

4p+2. (42)

12



Example 5 (Relations with s = 2). We note that unlike the case of s = 1 we have obtained
a relation of each weight! This will happen whenever s is even. The rational numbers qn
are easy to compute symbolically from (38). Thence, to order 16:

V2(ix, ix) = 1− 1

90
π4 x2 +

1

22680
π8 x4 − 53

525404880
π12 x6 +

19

128619114624
π16 x8

+

(
− 1

2835
π6 x3 +

1

561330
π10 x5 − 1

262702440
π14 x7

)
+ · · · . (43)

These illustrate how much unexpected structure one might hope to uncover within D. We
will give exact formulas for the coefficients of (43) in (49) and (50) below. ♦

Remark 2. There is additional useful information to be gleaned from (37). Setting y = −x,
we deduce that

V2(ix,−ix) =
1

π

∫ π

0
cos (Cl2(θ) 2x) dθ. (44)

Comparing coefficients on each side, we obtain linear combinations of U2 sums adding up

to C2n := 1
π

∫ π
0 Cl2(θ)

2n dθ for each positive integer n. While C1 = Ls
(1)
3 (π) [17], no closed

form seems to be known for any such C2n. ♦

3.5.1 The Us sums when s ≥ 3

It is possible to undertake the same analysis generally. For instance, from the evaluation
of the real function Gl3 [28, Eqn (22), p. 297] may deduce that

V3(x,−x) =
1

π

∫ π

0
cos

((
π2 − θ2

) θ
6
x

)
dθ. (45)

The Taylor series commences

V3(x,−x) = 1− 1

945
π6x2 +

1

3648645
π12x4 − 1

31819833045
π18x6 +O

(
x8
)
.

Again the order-two coefficient is in agreement with (34). Note also that 6U3(2, 1) is the
next coefficient and that all terms have the weight one would predict.

In generality, we exploit the Glaisher functions, given by Gl2n(θ) := Re Li2n
(
eiθ
)

and
Gl2n+1(θ) := Im Li2n+1

(
eiθ
)
. They possess closed forms:

Gln (θ) = (−1)1+bn/2c2n−1
πn

n!
Bn

(
θ

2π

)
(46)

for n > 1 where Bn is the n-th Bernoulli polynomial [28, Eqn. (22), p 300 ] and 0 ≤ θ ≤ 2π.
Thus, Gl5 (θ) = 1

720 t (π − t) (2π − t)
(
4π2 + 6π t− 3 t2

)
.

13



We then observe that:

V2n+1(x,−x) =
1

2π

∫ 2π

0
cos
(

Gl2n+1

(
eiθ
)
x
)

dθ, (47)

V2n(ix, ix) =
1

2π

∫ 2π

0
exp

(
i
(

Gl2n

(
eiθ
)
x
))

dθ. (48)

In each case substitution of (46) and term-by-term expansion of cos or sin leads to an ex-
pression for the coefficients—note that Gln (θ) is an homogeneous two-variable polynomial
in π and θ with each monomial of degree n. Indeed, we are thus led to explicit formulas

rm(s) := (−1)m
4m−1

(2m)!π

∫ 2π

0

(
(−1)1+bs/2c

s!
(2π)sBn

(
θ

2π

))2m

dθ (49)

im(s) := (−1)m
2 4m−1

(2m+ 1)!π

∫ 2π

0

(
(−1)1+bs/2c

s!
(2π)sBn

(
θ

2π

))2m+1

dθ. (50)

for the real and imaginary coefficients of order 2m. (While we may expand these as finite
sums, they may painlessly be integrated symbolically.) The imaginary coefficient is zero
for s odd.

Thence, we have established:

Theorem 6 (Sum relations for Us). Let s be a positive integer. There is an analogue of
Theorem 3 when s is odd and of Theorem 5 when s is even.

Example 6 (Relations with s = 2 revisited). In Maple we have the code:

cor:=(s,m)->int(4^m*Gln(s,theta)^(2*m)/(2*m)!,theta=0..2*Pi)/2/Pi;

coi:=(s,m)->int(4^m*2*Gln(s,theta)^(2*m+1)/(2*m+1)!,theta=0..2*Pi)/2/Pi;

For s = 2 we recover

> add((-1)^k*cor(2,k)*x^(2*k),k=0..4);

1 2 4 1 8 4 53 12 6

1 - -- x Pi + ----- Pi x - --------- Pi x

90 22680 525404880

19 16 8

+ ------------ Pi x

128619114624
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> add((-1)^k*coi(2,k)*x^(2*k),k=0..3);

1 6 2 1 10 4 1 14 6

- ---- Pi x + ------ Pi x - --------- Pi x

2835 561330 262702440

for the real and imaginary coefficients of x2n, exactly as in (39) and (40). ♦

As in of Remark 2, we may also adduce that integrals of powers of n-th order Clausen
functions appear as linear combinations of Un sums.

4 Fundamental computational expedients

To numerically study the ensemble D intensively, we must be able to differentiate poly-
logarithms with respect to their order. Even for our primary goal herein—-the study of
D1—we need access to the first derivative of Li1.

4.1 Polylogarithms and their derivatives with respect to order

In regard to the needed polylogarithm values, reference [5] gives formulas such as the
following: when s = n is a positive integer,

Lin(z) =

∞ ′∑
m=0

ζ(n−m)
logm z

m!
+

logn−1 z

(n− 1)!
(Hn−1 − log(− log z)) , (51)

valid for | log z| < 2π. Here Hn := 1 + 1
2 + 1

3 + · · ·+ 1
n , and the primed sum

∑′
means to

avoid the singularity at ζ(1). For any complex order s not a positive integer,

Lis(z) =
∑
m≥0

ζ(s−m)
logm z

m!
+ Γ(1− s)(− log z)s−1. (52)

Note in formula (51), the condition | log z| < 2π precludes the usage of this formula for
computation when |z| < e−2π ≈ 0.0018674. For such small |z|, however, it suffices to use
the definition

Lis(z) =

∞∑
k=1

zk

ks
. (53)

In fact, we found that formula (53) is generally faster than (51) whenever |z| < 1/4, at
least for precision levels in the range of 100 to 4000 digits.
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4.1.1 Derivatives of general order polylogarithms

For positive integer k we have a formula in [22, §9, eqn. (51)]: for | log z| < 2π and
τ ∈ [0, 1):

Lik+1+τ (z) =
∑

0≤n6=k
ζ(k + 1 + τ − n)

logn z

n!
+

logk

k!

∞∑
j=0

ck,j(L) τ j , (54)

where L := log(− log z) and the c coefficients engage the Stieltjes constants [22, §7.1]:

ck,j(L) =
(−1)j

j!
γj − bk,j+1(L). (55)

Here the bk,j terms are given by

bk,j(L) :=
∑

p+t+q=j
p,t,q≥0

L p

p!

Γ(t)(1)

t!
(−1)t+qfk(q), (56)

where fk(q) is the coefficient of xq in
∏k
m=1

1
1+x/m , easily calculable via fk,0 = 1 and the

recursion

fk,q =

q∑
h=0

(−1)h

kh
fk−1,q−h. (57)

Then, fk,1 = −Hk and fk,2 = 1
2H

2
k + 1

2H
(2)
k , in terms of generalized harmonic numbers,

while ck,0 = Hk − L. With k = τ = 0 this yields (51).

To obtain first (or higher) derivatives Li
(1)
k+1(z), we differentiate (54) at zero and so

require the evaluation ck,1. With k = 0 and j = 1 this supplies (59) below.

4.1.2 The special case s = 1 and z = eiθ

Most importantly, we may write, for 0 < θ < 2π,

Li1(e
iθ) = − log

(
2 sin

(
θ

2

))
+

(π − θ)
2

i. (58)

As described above, the order derivatives Li′s(z) = d(Lis(z))/ ds for integer s, can be
computed with formulas such as

L′1(z) =
∞∑
n=1

ζ ′ (1− n)
logn z

n!
− γ1 −

1

12
π2 − 1

2
(γ + log (− log z))2 , (59)
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which, as before, is valid whenever | log z| < 2π. Here γ1 is the second Stieltjes constant
[3, 22]. For small |z|, it again suffices to use the elementary form

Li′s(z) = −
∞∑
n=1

zk log k

ks
. (60)

Relation (59) can be applied to yield the formula

Li′1(e
iθ) =

∞∑
n=1

ζ ′ (1− n)
(iθ)n

n!
− γ1 −

1

12
π2 − 1

2
(γ + log (−iθ))2 , (61)

valid and convergent for |θ| < 2π.
With such formulas as above, to evaluate U values one has the option of contemplating

either pure quadrature to resolve an element, a convergent series for same, or a combination
of quadrature and series. All of these are gainfully exploited in the MTW examples of [22].

4.2 ζ at integer arguments

Using formulas (51) and (52) for computation requires precomputed values of the zeta
function and its derivatives at integer arguments, see [3, 20]. One fairly efficient algorithm
for computing ζ(n) for integer n > 1 is the following given by Peter Borwein [18]: Choose
N > 1.2 ·D, where D is the number of correct digits required. Then

ζ(s) ≈ −2−N (1− 21−s)−1
2N−1∑
i=0

(−1)i
∑i−1

j=−1 uj

(i+ 1)s
, (62)

where u−1 = −2N , uj = 0 for 0 ≤ j < N−1, uN−1 = 1, and uj = uj−1 ·(2N−j)/(j+1−N)
for j ≥ N .

4.2.1 ζ at positive integer arguments

In our setting, given that we require ζ(n) for many integers n > 1, the following approach—
adopted in [6]—is more efficient. First, to compute ζ(2n), observe that

coth(πx) =
−2

πx

∞∑
k=0

ζ(2k)(−1)kx2k

= cosh(πx)/ sinh(πx)

=
1

πx
· 1 + (πx)2/2! + (πx)4/4! + (πx)6/6! + · · ·

1 + (πx)2/3! + (πx)4/5! + (πx)6/7! + · · ·
. (63)

Let P (x) and Q(x) be the numerator and denominator polynomials obtained by truncating
these two series to n terms. Then the approximate reciprocal R(x) of Q(x) can be obtained
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by applying the Newton iteration

Rk+1(x) := Rk(x) + [1−Q(x) ·Rk(x)] ·Rk(x), (64)

where both the degree of the polynomial and the numeric precision of the coefficients are
dynamically increased, approximately doubling whenever convergence has been achieved
at a given degree and precision, until the final desired degree and precision are achieved.
When this process is complete, the quotient P/Q is simply the product P (x) · R(x). The
required values ζ(2k) can then be obtained from the coefficients of this product polynomial
as in [6]. Note that ζ(0) = −1/2.

4.2.2 ζ at nonpositive integer arguments

The Bernoulli numbers B2k, which are also needed, can then be obtained from the positive
even-indexed zeta values by the formula [32, Eqn. (25.6.2)]

B2k = (−1)k+1 2(2k)!ζ(2k)

(2π)2k
. (65)

The positive odd-indexed zeta values can be efficiently computed using these two
Ramanujan-style formulas [6, 15]:

ζ(4N + 3) = −2
∞∑
k=1

1

k4N+3(exp(2kπ)− 1)

−π(2π)4N+2
2N+2∑
k=0

(−1)k
B2kB4N+4−2k

(2k)!(4N + 4− 2k)!
,

ζ(4N + 1) = − 1

N

∞∑
k=1

(2πk + 2N) exp(2πk)− 2N

k4N+1(exp(2kπ)− 1)2

− 1

2N
π(2π)4N

2N+1∑
k=1

(−1)k
B2kB4N+2−2k

(2k − 1)!(4N + 2− 2k)!
. (66)

Finally, the zeta function can be evaluated at negative integers by the following well-known
formulas [32, (25.6.3),(25.6.4)]:

ζ(−2n+ 1) = −B2n

2n
and ζ(−2n) = 0. (67)

4.3 ζ ′ at integer arguments

Precomputed values of the zeta derivative function are prerequisite for the efficient use of
formulas (59) and (61).
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4.3.1 ζ ′ at positive integer arguments

For positive integer arguments, the derivative zeta is well computed via a series-accelerated
algorithm for the derivative of the eta or alternating zeta function, see (80). The scheme is
illustrated in the following Mathematica code (for argument ss and precision prec digits).
It is an adaptation of a scheme presented in [22] and based on more general acceleration
methods in [21]:

zetaprime[ss_] :=

Module[{s, n, d, a, b, c}, n = Floor[1.5*prec]; d = (3 + Sqrt[8])^n;

d = 1/2*(d + 1/d);

{b, c, s} = {-1, -d, 0};

Do[c = b - c;

a = 1/(k + 1)^ss *(-Log[k + 1]);

s = s + c*a;

b = (k + n)*(k - n)*b/((k + 1)*(k + 1/2)), {k, 0, n - 1}];

(s/d - 2^(1 - ss)*Log[2]*Zeta[ss])/(1 - 2^(1 - ss))]

Note that in this algorithm, the logarithm and zeta values can be precalculated, and so do
not significantly add to the run time. Similar techniques apply to derivatives of η.

4.3.2 ζ
′
at nonpositive integer arguments

From the functional equation ζ(s) = 2(2π)s−1 sin πs
2 Γ(1− s) ζ(1− s) one can extract

ζ ′(0) = −1

2
log 2π

and for even m = 2, 4, 6, . . .

ζ ′(−m) :=
d

ds
ζ(s)|s=−m =

(−1)m/2m!

2m+1πm
ζ(m+ 1) (68)

[22, p. 15], while for odd m = 1, 3, 5 . . . on the other hand,

ζ ′(−m) = ζ(−m)

(
γ + log 2π −Hm −

ζ ′(m+ 1)

ζ(m+ 1)

)
. (69)

Example 7 (Zeta first derivative values). We obtain results such as

ζ ′(−4) =
3

4

ζ(5)

π4
,

and

ζ ′(−5) =
15

4π6
ζ
′
(6) +

137

15120
− γ

252
− 1

252
log 2π,

and so on. ♦

We shall examine different methods more suited to higher derivatives in the sequel.
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4.4 Higher derivatives of ζ

To approach these we first need to attack the Gamma function.

4.4.1 Derivatives of Γ at positive integers

Let gn := Γ(n)(1). Now it is well known [32, (5.7.1) and (5.7.2)] that

Γ(z + 1) C(z) = z Γ(z) C(z) = z (70)

where

C(z) :=
∞∑
k=1

ckz
k

with c0 = 0, c1 = 1, c2 = γ and

(k − 1)ck = γck−1 − ζ(2) ck−2 + ζ(3) ck−3 − · · ·+ (−1)k ζ(k − 1) c1, (71)

Thus, differentiating (70) by Leibniz’ formula, for n ≥ 1 we have

gn = −
n−1∑
k=0

n!

k!
gk cn+1−k. (72)

More generally, for positive integer m we have

Γ(z +m) C(z) = (z)m (73)

where (z)m := z(z + 1) · · · (z + m − 1) is the rising factorial. Whence, letting gn(m) :=
Γ(n)(m) so that gn(1) = gn, we may apply the product rule to (73) and obtain

gn(m) = −
n−1∑
k=0

n!

k!
gk(m) cn+1−k +

Dn+1
m

n+ 1
. (74)

Here Dn
m is the n-th derivative of (x)m evaluated at x = 0 and so is zero for n > m. For

n ≤ m these integer values are easily obtained symbolically or written in terms of Stirling
numbers of the first kind:

Dn
m =

m−n∑
k=0

s (m, k + n) (k + 1)n (m− 1)k = (n+ 1)! (−1)m+n+1s (m, 1 + n) . (75)

Thus, Dn
m

(n+1) = n!|s(m, 1 + n)| and so for n,m > 1 we obtain the recursion

gn(m)

n!
= −

n−1∑
k=0

gk(m)

k!
cn+1−k + |s(m, 1 + n)|. (76)

where for integer n, k ≥ 0

s(n, k) = s(n− 1, k − 1)− (n− 1) s(n− 1, k) , (77)

see [32, Equation (26.8.18)].
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4.4.2 Apostol’s formulas for ζ(k)(m) at negative integers

For n = 0, 1, 2, . . ., and with
κ := − log(2π)− 1

2πi,

we have Apostol’s explicit formulas [32, (25.6.13) and (25.6.14)]:

(−1)kζ(k)(1− 2n) =
2(−1)n

(2π)2n

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
Re(κk−m) Γ(r)(2n) ζ(m−r)(2n) , (78)

(−1)kζ(k)(−2n) =
2(−1)n

(2π)2n+1

k∑
m=0

m∑
r=0

(
k

m

)(
m

r

)
Im(κk−m) Γ(r)(2n+ 1) ζ(m−r)(2n+ 1)

. (79)

Since in (74) only the initial conditions rely on m, equations (78) and (79) are well
fitted to work with (74) (along with (77), and (71)).

4.4.3 η and its derivatives at negative integers

The alternating zeta function, whose computation at positive integer values was discussed
obliquely in Section 4.3.1, is given by

η(s) :=
(
1− 21−s

)
ζ(s) =

∞∑
n=1

(−1)n+1

n
. (80)

We may then compute η(n)(m) for negative integer m from the product rule again

η(n)(m) = η(m) ζ(n)(m) + 21−m
n∑
k=1

(−1)k
(
n

k

)
ζ(n−k)(m) logk 2. (81)

Conversely, as Lagrange duality will show,

ζ(n)(m) =

n∑
k=0

(
n

k

)
η(n−k)(m)Dk(m). (82)

Here

Dk(s) :=
dk

dsk

(
1

1− 21−s

)
=

− logk(2)

(−1 + 21−s)k+1

k∑
j=0

E (k, j + 1) 2(1−s)·(k−j), (83)

where E(k, j) is the Eulerian number given recursively by E(1, j) = δ1(j), E(k, 1) = 1 and,
for k, j ≥ 2,

E(k, j) = jE(k − 1, j) + (k − j + 1)E(k − 1, j − 1), (84)
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or by

E(k, j) =

j∑
i=0

(−1)i
(
k + 1

i

)
(j − i)k . (85)

One virtue of using η rather than ζ is that the pole at 1 has been removed. The other
is that we have access to the alternating series acceleration methods of Section 4.4.4. We
shall discuss further this below.

4.4.4 An eta-function approach to Lis (exp(iθ))

There is another approach given in [22, Section 8.3] to computing Lis(z),Lis (exp(iθ)), with
applications especially to alternating MTW sums. This is an attractive, compact series,
valid now for | log z| < π,

Lis(−z) = −
∑
m≥0

η(s−m)
logm z

m!
, (86)

where now no poles need be avoided and so for | log z| < π, and d = 1, 2, . . .

Li(d)s (−z) = −
∑
m≥0

η(d)(s−m)
logm z

m!
. (87)

This is especially neat on the unit circle:

Li(d)s

(
ei(θ+π)

)
= −

∑
m≥0

η(d)(s−m)
(iθ)m

m!
. (88)

Alternatively, we have attractive Clausen formulas such as

Cl
(d)
2 (π − θ) =

∑
m≥0

η(d)(1− 2m)
θ2m+1

(2m+ 1)!
, (89)

valid for |θ| < π. For convenience we list that η′(1) = γ log 2 − 1
2 log2 2 and η(2)(1) =

1
2 (ζ(2) log 2 + ζ ′(2)) .

We note that if τ = θ + π with |θ| < π then

Li(d1)s1

(
−eiθ

)
= Li(d1)s1

(
eiτ
)
, Li(d2)s2

(
−e−iθ

)
= Li(d2)s2

(
ei(−π−θ)

)
= Li(d2)s2

(
e−iτ

)
,

while 0 < τ < 2π.
It is not clear whether this relatively simple eta-series is applicable directly to com-

pute general ω-values as in (5) using (88). One difficulty with such an approach is that
convergence is very slow near an endpoint | log z| ∼ π; note that such z values challenge
the radius of convergence of (86), while by contrast the more recondite series (61) enjoys a
comfortably wider radius. In any case, the eta-series is certainly of interest for quadrature
on alternating MTW sums which we do not cover in the present treatment.
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4.5 Tanh-sinh quadrature

One final topic we mention is how best to efficiently perform quadrature calculations of
the sort indicated, for instance, for the U constants (7). Since the integrands in (7) are
typically rather badly behaved, we recommend the tanh-sinh quadrature algorithm, which
is remarkably insensitive to singularities at endpoints of the interval of integration.

Given h > 0, the tanh-sinh quadrature scheme approximates the integral of a function
f(x) on (−1, 1) as∫ 1

−1
f(x) dx =

∫ ∞
−∞

f(g(t))g′(t) dt ≈ h

N∑
j=−N

wjf(xj), (90)

where the abscissas xj and weights wj are given by

xj = g(hj) = tanh (π/2 · sinh(hj))

wj = g′(hj) = π/2 · cosh(hj)/ cosh (π/2 · sinh(hj))2 , (91)

and where N is chosen large enough that terms of the summation beyond N (positive or
negative) are smaller in absolute value than the “epsilon” of the numeric precision being
used. Note that the abscissas xj and weights wj can be precomputed, and then applied
to any number of quadrature calculations. For many integrand functions, including those
indicated in (7), reducing h by half in (90) and (91) roughly doubles the number of correct
digits in the approximation, provided the calculations are done to a precision level at least
that desired for the final result. Full details are given in [9].

With regards to the U constant calculations, it suffices to perform the integral from
0 to π, then divide by π, rather than integrating to 2π, provided we integrate with the
real part of the integrand function. It is also important to note that since one typically
computes numerous different U(m,n, p, q) for different values of m,n, p and q, it is much
faster to precompute, in an initialization step, the polylog functions and polylog derivative
functions (sans the exponents) at each of the tanh-sinh abscissa points xj . In this way,
during an actual quadrature calculation, the evaluation of the integrand in (7) merely
consists of table look-ups and a few multiplications for each function evaluation. In our
implementations, quadrature calculations were accelerated by a factor of over 1000 by this
expedient.

5 More recondite MTW interrelations

We now return to our objects of central interest.

5.1 Reduction of classical MTW values and derivatives

Partial fraction manipulations allow one to relate partial derivatives of MTWs. Such a
relation in the classical three parameter setting is:
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Theorem 7 (Reduction of classical MTW derivatives [5]). Let nonnegative integers a, b, c
and r, s, t be given. Set N := r + s+ t. Then for δ := ωa,b,c we have

δ(r, s, t) =
r∑
i=1

(
r + s− i− 1

s− 1

)
δ (i, 0, N − i) +

s∑
i=1

(
r + s− i− 1

r − 1

)
δ (0, i, N − i) . (92)

In the case that δ = ω this shows that each classical MTW value is a finite positive
integer combination of MZVs.

Proof. 1. For non-negative integers r, s, t, v, with r + s+ t = v, and v fixed, we induct on
s. Both sides satisfy the same recursion:

d(r, s, t− 1) = d(r − 1, s, t) + d(r, s− 1, t) (93)

and the same initial conditions (r + s = 1).

Proof. 2. Alternatively, note that the recurrence produces terms of the same weight, N .
We will keep the weight N fixed and just write d (a, b) for d (a, b,N − a− b).

By applying the recurrence (93) to d (r, s) repeatedly until one of the variables r, s
reaches 0, one ends up with summands of the form d (k, 0) or d (0, k). As the problem
is symmetric, we focus on the multiplicity with which d (k, 0) occurs. Note that, d (k, 0)
is obtained from (93) if and only if one previously had d (k, 1). Thus, the multiplicity of
d (k, 0) is the number of zig-zag paths from (k, 1) to (r, s) in which each step of a path adds
either (1, 0) or (0, 1).

The number of such paths is given by(
(r − k) + (s− 1)

s− 1

)
=

(
r + s− k − 1

s− 1

)
.

This again proves the claim.

Of course (92) holds for any δ satisfying the recursion (without being restricted to
partial derivatives). This argument generalizes to arbitrary depth. We illustrate the next
case from which the general case will be obvious if a tad inelegant.

Theorem 8 (Partial reduction of ω (q, r, s | t)). For non-negative integer q, r, s, t, assume
that d (q, r, s, t) satisfies the recurrence

d (q, r, s, t) = d (q − 1, r, s, t+ 1) + d (q, r − 1, s, t+ 1) + d (r, s− 1, t+ 1) . (94)
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Let N := q + r + s+ t. Then

d (q, r, s, t) =
r∑

k=1

s∑
j=1

(
N − t− k − j − 1

q − 1, r − k, s− j

)
d (0, k, j,N − k − j)

+

q∑
k=1

s∑
j=1

(
N − t− k − j − 1

q − k, r − 1, s− j

)
d (k, 0, j,N − k − j)

+

q∑
k=1

r∑
j=1

(
N − t− k − j − 1

q − k, r − j, s− 1

)
d (k, j, 0, N − k − j) .

Example 8 (Values of δ). Herein we use the shorthand notation

ωa,b,c(r, s, t) := ω

(
r , s | t
a , b | c

)
.

The techniques in [22] provide:

ω1,1,0(1, 0, 3) = 0.07233828360935031113948057244763953352659776102642...

ω1,1,0(2, 0, 2) = 0.29482179736664239559157187114891977101838854886937848122804...

ω1,1,0(1, 1, 2) = 0.14467656721870062227896114489527906705319552205284127904072...

while

ω1,0,1(1, 0, 3) = 0.14042163138773371925054281123123563768136197000104827665935...

ω1,0,1(2, 0, 2) = 0.40696928390140268694035563517591371639834128770661373815447...

ω1,0,1(1, 1, 2) = 0.4309725339488831694224817651103896397107720158191215752309...

and

ω0,1,1(2, 1, 1) = 3.002971213556680050792115093515342259958798283743200459879...

We note that ω1,1,0(1, 1, 2) = 2ω1,1,0(1, 0, 3) and ω1,0,1(1, 0, 3)+ω1,0,1(0, 1, 3)−ω1,0,1(1, 1, 2)

= 0.140421631387733719247 + 0.29055090256114945012− 0.43097253394888316942

= 0.00000000000000000000...,

both in accord with Theorem 7. We note also that PSLQ run on the above data predicts
that

ζ
′′
(4)

?
= 4ω1,1,0(1, 0, 3) + 2ω1,1,0(2, 0, 2)− 2ω1,0,1(2, 0, 2), (95)

which discovery also validates the effectiveness of our high-precision techniques. ♦
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From (95) it is clear that much less trivial derivative relations exist within D than can
be found within D1. Indeed, as noted in (120)

U(1, 1, 1, 1) = ω

(
1 | 1
1 | 1

)
= ζ

′′
(2). (96)

More generally, with ζa,b denoting partial derivatives, it is immediate that

ω

(
s, 0 | t
a, 0 | b

)
= ζa,b(t, s) (97)

ω

(
s, t | 0
a, b | 0

)
= ζ(a)(s) ζ(b)(t). (98)

We may now prove (95):

Proposition 1.

ζ
′′
(4) = 4ω1,1,0(1, 0, 3) + 2ω1,1,0(2, 0, 2)− 2ω1,0,1(2, 0, 2). (99)

Proof. First note that by (98)

ω1,1,0(2, 2, 0) = ζ
′
(2)2.

Next the MZV reflection formula ζ(s, t) + ζ(t, s) = ζ(s)ζ(t) − ζ(s + t), see [10], valid for
real s, t > 1 yields ζ1,1(s, t) + ζ1,1(t, s) = ζ ′(s)ζ ′(t)− ζ(2)(s+ t). Hence

2ω1,0,1(2, 0, 2) = 2ζ1,1(2, 2) = ζ ′(2)2 − ζ ′′(4)

where the first equality follows from (97). Since ω1,1,0(2, 0, 2) = 2ω1,0,1(2, 1, 1) by Theorem
7, our desired formula (99) is

ζ
′′
(4) + 2ω1,0,1(2, 0, 2) = 4ω1,1,0(1, 0, 3) + 2ω1,1,0(2, 0, 2), (100)

which is equivalent to

ζ
′
(2)2 = ω1,1,0(2, 2, 0) = 4ω1,1,0(1, 0, 3) + 2ω1,1,0(2, 0, 2). (101)

The final equality is another easy case of Theorem 7.

5.2 Relations when M ≥ N ≥ 2

In general we deduce from (2), by a now familiar partial fraction argument that since∑
tk =

∑
sj we have
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Theorem 9 (Relations for general ω).

N∑
k=1

ω

(
s1, . . . , sM | t1, . . . , tk−1, tk − 1, tk+1, . . . , tN
d1, . . . , dM | e1, . . . eN

)

=
M∑
j=1

ω

(
s1, . . . , sj−1, sj − 1, sj+1, . . . , sM | t1, . . . , tN

d1, . . . , dM | e1, . . . eN

)
. (102)

When N = 1 and M = 2 this is precisely (93). For general M and N = 1 there is a
result like Theorem 8. For N > 1 we will be able to deduce relations but have found no
such reduction.

5.3 Complete reduction of MTW values when N = 1

When N = 1 it is possible to use Theorem 9 to show that every MTW value (without
derivatives) is a finite sum of MZV’s. The basic tool is the partial fraction

m1 +m2 + . . .+mk

ma1
1 m

a2
1 · · ·m

ak
k

=
1

ma1−1
1 ma2

1 · · ·m
ak
k

+
1

ma1
1 m

a2−1
1 · · ·mak

k

+
1

ma1
1 m

a2
1 · · ·m

ak−1
k

.

We detail this algorithmically for M = 3 before presenting a general theorem.

1. Use (102) to recursively write ω(q, r, s | t) as a superposition of terms ω(a, b, 0 | c)
(appealing to symmetry reduces the number of terms): first

ω(q, r, s | t) = ω(q − 1, r, s | t+ 1) + ω(q, r − 1, s | t+ 1) + ω(q, r, s− 1 | t+ 1).
(103)

We run this at t 7→ t+ 1 until one of the RHS variable reaches zero.

2. Define

κ(a, b | t, u) :=
∑

n,m,k>0

1

namb(n+m)t(n+m+ k)u
, (104)

3. Observe that

κ(a, b | 0, c) = ω(a, b, 0 | c) while κ(a, 0 | b, c) = ζ(c, b, a).

4. Now, using partial fractions as before, yields

κ(a, b | t, u) = κ(a− 1, b | t+ 1, u) + κ(a, b− 1 | t+ 1, u). (105)
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5. Then used recursively, (105) writes each ω(a, b, 0 | c) as a superposition of ζ(c, b, a) as
required because we again let t 7→ t+ 1 and terminate when one of the a, b variables
reaches zero.

Example 9 (An implementation). The precise superposition formula is achieved by com-
bining Theorem 7 and Theorem 8. Implemented in Maple this becomes:

W3:=proc (q, r, s, t) if q = 0 then kappa(r, s, 0, t) elif r = 0 then

kappa(q, s, 0, t) elif s = 0 then kappa(q, r, 0, t)

else W3(q-1, r, s, t+1)+W3(q, r-1, s, t+1)+W3(q, r, s-1, t+1)

end if

end proc:

kappa:=proc(q,r,s,t) ;if q=0 then zeta(t,s,r) elif r=0 then zeta(t,s,q)

else kappa(q-1,r,s+1,t)+kappa(q,r-1,s+1,t) fi;end:

>W3(1,1,1,1);

6 zeta(2, 1, 1) = 6 Zeta(4)

>W3(3,2,1,1);

12*Zeta(4, 2, 1)+6*Zeta(4, 1, 2)+18*Zeta(5, 1, 1)+4*Zeta(3, 2, 2)

+8*Zeta(3, 3, 1)+2*Zeta(3, 1, 3)+3*Zeta(2, 3, 2)+6*Zeta(2, 4, 1)

+Zeta(2, 2, 3)

Given efficient computations of the final MZVs, this is a very rapid process for numerical
computation of reasonable depth and weight MTWs with N = 1. ♦

With much the same argument this works cleanly for all M . Each time we get another
zero we get a recursion in one less variable until we remove all except one of the single
variables. Thus, we derive:

Theorem 10 (Complete reduction of ω(a1, a2, . . . , aM | b)). For nonnegative values of
a1, a2, . . . , aM , b the following holds:

a) Each ω(a1, a2, . . . , aM | b) is a finite sum of values of MZVs of depth M and weight
a1 + a2 + · · ·+ aM + b.

b) In particular, if the weight is even and the depth odd or the weight is odd and the
depth is even then the sum reduces to a superposition of sums of products of that
weight of lower weight MZVs.
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Proof. For (a), let us define Nj := n1 + n2 + · · ·nj and set

κ(a1, . . . an | b1, . . . bn) :=
∑
ni>0

1∏n
i=1 ni

ai
∏n
j=1Nj

bj
, (106)

for positive integers ai and non negative bj (with bn large enough to assure convergence).
Thence κ(a1, . . . an | b1) = ω(a1, . . . an | b1).

Noting that κ is symmetric in the ai we denote −→a to be the non-increasing rearrange-
ment of a := (a1, a2, · · · , an). Let k be the largest index of a non-zero element in −→a . Using
the partial fraction above, we have

κ(a | b) = κ(−→a | b) =
k∑
j=1

κ(−→a − ej , | b+ ek).

We repeat this step until there are only k − 1 no zero entries. Each step leaves the weight
of the sum invariant. Continuing this process (observing that the repeated rearrangements

leave the Nj terms invariant) we arrive at a superposition of sums of the form κ(
−→
0 | b) =

ζ(bn, bn−1, . . . , b1). Moreover, the process assures that each variable is reduced to zero and
so each final bj > 0. In particular, we may start with κ such that each ai > 0 and bj = 0
except for j = n. This captures all our ω sums and other intermediate structures.

Part (b) follows from recent results in the MZV literature [36].

Tsimura [37] provides a reduction theorem for exactly our MTWs with N = 1 to lower
weight MTWs. In light of Theorem 10, this result is subsumed by his earlier paper [36]. As
we discovered later, Theorem 10 was recently proven very neatly by explicit combinatorial
methods in [19], which do not lend themselves to our algorithmic needs.

5.4 Degenerate MTW derivatives with zero numerator values

In Theorem 10 we make no such assertion about derivative values—our zero value may
still have a log term in the corresponding variable—nor about the case with N ≥ 2. For
example, it appears unlikely that

ω

(
1 , 0 | 2
0 , 1 | 0

)
=

∞∑
n=1

1

n2

n−1∑
m=1

log(n−m)

m
(107)

is reducible to derivatives of MZVs. Likewise, for s > 2 we have

ω

(
0 , 0 | s
0 , 1 | 0

)
= −

∞∑
n=2

log Γ(n)

ns
. (108)
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We observe that such ω values with terms of order zero cannot be computed directly
from the integral form of (5) without special attention to convergence at the singularities.
Instead we may recast such degenerate derivative cases as:

ω

(
q , r | s
0 , 1 | 0

)
=

1

Γ(s)

∫ ∞
0

xs−1Liq(e
−x) Li(1)r (e−x) dx. (109)

Though we have deemed it unlikely that MTW derivatives can be cast as finite super-
positions of MZV derivatives, it is yet possible to go some distance in establishing some
(non finitary) relations. Consider the development

ω

(
r , 0 | s
0 , 1 | 0

)
= −

∑
m,n≥1

1

mr
log n

1

(m+ n)s
(110)

= −
∑
N≥1

1

N s

N−1∑
M=1

log(N −M)

M r

= ζ(1,0)(s, r) +
∑
k≥1

1

k
ζ(s+ k, r − k).

Here, ζ(1,0)(s, r) is the first parametric derivative ∂ζ(s, r)/∂s. What is unsatisfactory about
in this last expression is that the k-sum is not a finite superposition—although it does
converge, as is not hard to show in the following way.

For given r, t turns out that only finitely many ζ(s + k, r − k) cannot be given closed
form. Indeed, ∑

k≥1

1

k
ζ(s+ k, r − k) =

r∑
k=1

1

k
ζ(s+ k, r − k) + Tr, (111)

where the MZV summands on the right here may well have no closed form, but Tr is

Tr =
∑
k>r

1

k

∑
N≥1

1

N s+k

N−1∑
m=1

Mk−r,

with theM -sum being expressible in classical style as a sum of powers ofN . Asymptotically,
the M -sum is thus O(Nk−r/(k − r)) so that the tail Tr always converges. Explicitly, in
terms of Bernoulli numbers,

Tr =
∑
k>r

1

k

1

k − r + 1

k−r+1∑
j=1

(
k − r + 1

j

)
Bk−r+1−j ζ(s+ k − j). (112)

All of this shows that the MTW derivative in question can be expressed as

(MZV derivative) + (finite superposition of MZV’s) + (rational zeta series).
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Example 10. Returning to our example (108) with power r = 0, we have the decomposi-
tion

ω

(
0 , 0 | s
0 , 1 | 0

)
= −

∑
n≥2

log Γ(n)

ns

= ζ ′(s− 1)− ζ ′(s) +
∑
k≥1

1

k
ζ(s+ k,−k),

where, as we have see, the MZV’s occurring in the tail, while infinite in number, each have
a closed form in terms of Riemann zetas alone. Thus, it is not out of the question that this
final sum might yet be reducible.

6 MTW resolution of the log-gamma problem

As a larger example of our interest in such MTW sums we shall show that the subensemble
D1 from Section 2.1 completely resolves of the log-gamma integral problem [5]—in that
every one of our log-gamma integrals LGn lies in a specific algebra.

6.1 Log-gamma representation

We start, as in [5] with the Kummer series, see [2, p. 28], or [30, (15) p. 201]:

log Γ(x)− 1

2
log(2π) =− 1

2
log (2 sin(πx)) +

1

2
(1− 2x) (γ + log(2π))

+
1

π

∞∑
k=2

log k

k
sin(2πkx) (113)

for 0 < x < 1. But with a view toward polylogarithm representations, this can be satisfac-
torily written as:

log Γ
( z

2π

)
− 1

2
log 2π = ALi1(e

iz) +B Li1(e
−iz) + C Li

(1)
1 (eiz) +D Li

(1)
1 (e−iz), (114)

where the absolute constants are

A :=
1

4
+

1

2πi
(γ + log 2π), C := − 1

2πi
, B := A∗, D := C∗. (115)

Here ′∗′ denotes the complex conjugate.
We define a vector space V1 whose basis is the subensemble D1, with coefficients gen-

erated by the rationals Q together with a certain four fundamental constants:

ci ∈
{
Q ∪

{
π,

1

π
, γ, g := log 2π

}}
.
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Specifically,

V1 :=
{∑

ciωi : ωi ∈ D1

}
,

where any sum therein is finite.
These observations lead to a resolution of the Eulerian log-gamma problem, which is

to request to evaluate integrals

LGn :=

∫ 1

0
logn Γ(x) dx.

As foreshadowed in [5]:

Theorem 11. For every integer n ≥ 0, the n-th log-gamma integral can be resolved in the
sense that LGn ∈ V1.
(The proof exhibits an explicit form for the requisite superposition

∑
ciωi for any n.)

Proof. By induction. It is enough to show that generally

Gn :=

∫ 1

0

(
log Γ(z) − g

2

)n
dz (116)

is in V1, because it is a classic Eulerian result that LG1 = g
2 (i.e. G1 = 0), so that for n > 1

we may use recursion in the ring to resolve LGn. By formula (114), we write Gn as

Gn := n!
∑

a+b+c+d=n

AaBbCcDd

a!b!c!d!
U(a+ c, b+ d, c, d),

where U has been defined by (7). This finite sum for Gn is in the vector space V1.

Example 11 (Examples of G). Some examples of the proof details are instructive at this
juncture. We have, recalling g := log 2π, the following:

For n = 1, we have Euler’s evaluation [5]

G1 =

∫ 1

0

(
log Γ(z) − g

2

)
dz = 0. (117)

For n = 2, so that the relevant generators from subensemble D1 have a+ b+ c+ d = 2,
and consistent with previous developments [1, 5], we can extract an algebra superposition
for LG2 via

G2 =

∫ 1

0

(
log Γ(z) − g

2

)2
dz (118)

=

(
4(g + γ)2 + π2

)
8π2

U(1, 1, 0, 0)− (2g + 2γ)

4π2
(U(1, 1, 0, 1)

+U(1, 1, 1, 0)) +
U(1, 1, 1, 1)

2π2
. (119)
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Since U(1, 1, 0, 0) = ζ(2), while U(1, 1, 0, 1) = U(1, 1, 1, 0) = ζ
′
(2), and U(1, 1, 1, 1) = ζ

′′
(2),

this decodes as

LG2 =
1

4
log2(2π) +

1

48
π2 +

1

12
(γ + log(2π))2 − 1

π2
(γ + log(2π)) ζ

′
(2)

+
1

2π2
ζ
′′
(2). (120)

For n = a+ b+ c+ d = 3 we obtain (in the following we set h := γ + log 2π)

G3 =

∫ 1

0

(
log Γ(z) − g

2

)3
dz (121)

=
3
(
4h2 + π2

)
32π2

U(2, 1, 0, 0)− 3h

4π2
U(2, 1, 0, 1) +

3

4π2
U(2, 1, 1, 1)

− 3

8π2
U(2, 1, 2, 0). (122)

For n = a+ b+ c+ d = 4 we obtain

G4 =

∫ 1

0

(
log Γ(z) − g

2

)4
dz (123)

=

(
π4 − 16h4

)
U(3, 1, 0, 0)

32π4
+

(
4h3 − 3π2h

)
U(3, 1, 0, 1)

8π4

+
3
(
4h2 + π2

)2 U(2, 2, 0, 0)

128π4
−

3h
(
4h2 + π2

)
U(2, 2, 0, 1)

16π4

−
3h
(
4h2 + π2

)
U(2, 2, 1, 0)

16π4
+

3
(
4h2 + π2

)
U(2, 2, 1, 1)

8π4

+
3h
(
4h2 + π2

)
U(3, 1, 1, 0)

8π4
−

3
(
4h2 + π2

)
U(3, 1, 2, 0)

8π4

−
3
(
π2 − 4h2

)
U(2, 2, 0, 2)

32π4
−

3
(
π2 − 4h2

)
U(2, 2, 2, 0)

32π4

+
3
(
π2 − 4h2

)
U(3, 1, 1, 1)

8π4
− 3hU(2, 2, 1, 2)

4π4

− 3hU(2, 2, 2, 1)

4π4
+

3hU(3, 1, 2, 1)

2π4
+
hU(3, 1, 3, 0)

2π4

+
3U(2, 2, 2, 2)

8π4
− U(3, 1, 3, 1)

2π4
. (124)
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For n = a+ b+ c+ d = 5, we can extract the previously unresolved LG5 from

G5 =

∫ 1

0

(
log Γ(z) − g

2

)5
dz (125)

=
5
(
4h2 + π2

)2
256π4

U(3, 2, 0, 0)−
5h
(
4h2 + π2

)
16π4

U(3, 2, 0, 1)

+
15
(
4h2 + π2

)
32π4

U(3, 2, 1, 1)−
15
(
4h2 + π2

)
64π4

U(3, 2, 2, 0)

+
5
(
π2 − 12h2

) (
4h2 + π2

)
512π4

U(4, 1, 0, 0) +
5h
(
4h2 + π2

)
16π4

U(4, 1, 1, 0)

−
15
(
4h2 + π2

)
64π4

U(4, 1, 2, 0) +
5
(
12h2 − π2

)
64π4

U(3, 2, 0, 2)− 15h

8π4
U(3, 2, 1, 2)

+
5h

8π4
U(3, 2, 3, 0) +

5
(
π2 − 12h2

)
32π4

U(4, 1, 1, 1) +
15h

8π4
U(4, 1, 2, 1)

+
5h
(
4h2 − π2

)
32π4

U(4, 1, 0, 1) +
15

16π4
U(3, 2, 2, 2)− 5

8π4
U(3, 2, 3, 1)

− 5

8π4
U(4, 1, 3, 1) +

5

32π4
U(4, 1, 4, 0). (126)

For both n = 2 and n = 3 these evaluations lead to those previously published in [5].

To clarify the notation in these recondite expressions, we state two example terms—namely
the last U-value above for G5, which is

U(4, 1, 4, 0) = ω

(
1, 1, 1, 1 | 1
1, 1, 1, 1 | 0

)
=

∑
m,n,p,q

logm log n log p log q

mnp q (m+ n+ p+ q)
. (127)

and the double MTW sum:

U(3, 2, 3, 0) = ω

(
1, 1, 1 | 1, 1
1, 1, 1 | 0, 0

)
=

′∑
m,n,p,q

logm log n log p

mnp q (m+ n+ p− q)
. (128)

Here the ‘′’ indicates we avoid the poles. It is a triumph of the integral representations that
very slowly convergent sums such as (127) and (128) ( of weight nine and eight respectively)
can be calculated to extreme precision in short time. ♦

Remark 3. In all the examples above πn−1LGN is realized with no occurrence of 1/π;
with more care it should be possible to adduce this in the proof of Theorem 11. ♦
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6.2 An exponential generating function for the LGn
To conclude this analysis, we yet again turn to generating functions. Let us define:

Y(x) :=
∑
n≥0
LGn

xn

n!
=

∫ 1

0
Γx(1− t) dt. (129)

Now, from the exponential-series form for Γ given in (23), it follows quickly that the general
log-gamma integral is expressible as follows

Theorem 12. For n = 1, 2, . . .

LGn =
∑

m1,...,mn≥1

ζ∗(m1) ζ
∗(m2) · · · ζ∗(mn)

m1m2 · · ·mn(m1 + . . .mn + 1)
, (130)

where ζ∗(1) := γ and ζ∗(n) := ζ(n) for n ≥ 2.

In particular, the Euler’s evaluation of LG1 leads to

log
√

2π =
∑
m≥1

ζ∗(m)

m(m+ 1)

=
1

2
+ γ +

∑
m≥2

ζ(m)− 1

m(m+ 1)
,

a rapidly convergent rational eta-series. It is fascinating—and not completely understood—
how the higher LGn can be finite superpositions of derivative MTWs, as we know, and yet
for any index n these log-gamma integrals as infinite sums engage only the ζ-function
convolutions as above.

7 Numerical experiments

In an effort both to check our theory and evaluations above, and also to further explore
the space of the constants and functions being analyzed, we performed several numerical
computations.

7.1 Computations of the G constants

In our first computation, we computed G(2), G(3), G(4) and G(5) to 400-digit precision,
using Mathematica and the formulas (118), (121), (123) and (125). Then we separately
computed these constants using formulas (119), (122), (124) and (126). This second set
of computations was performed with a combination of the ARPREC arbitrary precision
software [8] and our implementation of the tanh-sinh quadrature algorithm (90) to compute
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the numerous U constants that appear in formulas (119), (122), (124) and (126). We
employed formulas (51), (52), (59) and (61) to evaluate the underlying polylog and polylog
derivatives; and formulas (62), (63), (65), (66) and (67) to evaluate the underlying zeta
and zeta derivatives.

The results of these two sets of calculations matched to 400-digit accuracy. Here are
our 400-digit values for Gn, 2 ≤ n ≤ 5:

G(2) =

1.02186905598520665379766897429270227225728935347049021404932007954291

4822812230316346019965407178139635519941059164807745247326926309995731

3997512255380295930794029004152862173913702886050064547476514918837221

7346957031918547469003562890989649716395646738011214999052870333851453

2595110642589149987197987780589087047152829297434202593887423392443879

356534311066730513877700759535491416157266885504624

G(3) =

2.14728842088481720475269216366752854640150302596977765026060123588067

7893912441157610058141066676835926293341902057894078837376205988048214

8963659830320543721667041466157167523983756252527974024505366516994405

7596718898020238066116241903185583841968941772265741033501952971299841

8570206825260401573989607602934975337547900377338567431714882998611155

557913683043153310887854877943542378021990121314709

G(4) =

9.60602585239573084465874355932859101433487909011737193052140866424016

8543744548145772529154110491198133159166578474713719703476791766191772

2704888404405652032031452183897414363176292592388705963322455027839376

2795846069975498418148001664977372622808879413712730474756056358114225

4072014549038507972369233469175958231773693152249524436176693770966660

496333905460471600762705190138485178869197636008376

G(5) =

47.4443724960735762605374696417757945376635206983622256690323974264225

4997279623094143877934035405384936621025013904885767766916639053013698

5604936790731080045401985995190510803727972851864406009936892475769746

5242705758870675007514112686748506926573143012447629869603635313065767

0858057703878739201258725226176055659160950274041647798759870204366752

333418078619509916338886221328957064336634718497078
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7.2 Computation of the U constants in D1

In a subsequent calculation, we computed, to 3100-digit precision, all of the U constants
in the class D1 up to degree 10 (i.e., whose indices sum to 10 or less), according to the
defining formula (7) and the rules given for D1 in Section 2.1. In particular, we calculated
U(m,n, p, q) with m,n ≥ 1, m ≥ n, m ≥ p, n ≥ q, m + n + p + q ≤ 10. Our computer
program found that there are 149 constants in this class.

These computations, as above, were performed using the ARPREC arbitrary precision
software [8] and the tanh-sinh quadrature algorithm (90), employing formulas (51), (52),
(59) and (61) to evaluate the underlying polylog and polylog derivatives; and formulas
(62), (63), (65), (66) and (67) to evaluate the underlying zeta and zeta derivatives.

We then searched among this set of numerical values for linear relations, using the
multipair “PSLQ” integer relation algorithm [7], [13, pg. 230–234]. Our program first
found the following relations, confirmed to over 3000-digit precision:

0 = U(M,M, p, q)− U(M,M, q, p), (131)

for M ∈ [1, 4] and 2M + p+ q ∈ [2, 10], a total of 11 relations. These relations are easy to
establish, either by exchanging variables in the summation definition for U , or by noting
that when m = n = M , interchanging p and q in the integrand of (7) is equivalent to
merely taking the conjugate of the integrand, which, since the integral is real, leaves the
result unchanged. The fact that the programs uncover these simple symmetry relations
gave us some measure of confidence that software was working properly.

The programs then produced the following more sophisticated set of relations:

0 = 6U(2, 2, 0, 0)− 11U(3, 1, 0, 0)

0 = 160U(3, 3, 0, 0)− 240U(4, 2, 0, 0) + 87U(5, 1, 0, 0)

0 = 1680U(4, 4, 0, 0)− 2688U(5, 3, 0, 0) + 1344U(6, 2, 0, 0)− 389U(7, 1, 0, 0)

0 = 32256U(5, 5, 0, 0)− 53760U(6, 4, 0, 0) + 30720U(7, 3, 0, 0)− 11520U(8, 2, 0, 0)

+ 2557U(9, 1, 0, 0). (132)

Upon completion of the final relation search, our PSLQ program reported an exclusion
bound of 2.351 × 1019. This means that if there is any integer linear relation among the
set of 149 constants that is not listed above, then the Euclidean norm of the corresponding
vector of integer coefficients must exceed 2.351 × 1019. Under the hypothesis that linear
relations only are found among constants of the same degree, we obtained exclusion bounds
of at least 3.198× 1073 for each degree in the tested range (degree 4 through 10).

The entire computation just described, including quadrature and PSLQ calculations,
required 94,727 seconds run time on one core of a 2012-era Apple MacPro workstation. Of
this run time, initialization (including the computation of zeta and zeta derivative values,
as well as precalculating values of Li1(e

iθ) and Li′1(e
iθ) at abscissa points specified by the

tanh-sinh quadrature algorithm [9]) required 82074 seconds. After initialization, the 149
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quadrature calculations completed rather quickly (a total of 6894 seconds), as did the 16
PSLQ calculations (a total of 5760 seconds).

We observe that these relations can be established by using Maple to symbolically
evaluate the righthand side of (25) as described in the second proof of Theorem 2 or
as in Example 1. For instance, U(3, 1, 0, 0) = 6 ζ(4), and U(2, 2, 0, 0) = 11 ζ(4), which
establishes the first relation in (132). Likewise, the second relation is a consequence of the
three evaluations:

U(3, 3, 0, 0) =
963

4
ζ(6) + 36 ζ(3)2

U(4, 2, 0, 0) = 204 ζ(6) + 24 ζ(3)2

U(5, 1, 0, 0) = 120 ζ(6).

Similarly, the third relation in (132) follows from

U(4, 4, 0, 0) = 11103 ζ(8) + 2304 ζ (5) ζ (3) + 576 ζ (3)2 ζ(2)

U(5, 3, 0, 0) = 10350 ζ(8) + 2160 ζ (5) ζ (3) + 360 ζ (3)2 ζ(2)

U(6, 2, 0, 0) = 8280 ζ(8) + 1440 ζ (5) ζ (3)

U(7, 1, 0, 0) = 5040 ζ(8).

And so on.

7.3 A conjecture posited, then proven

From the equations in (132) we conjectured that (i) there is one such relation at each even
weight (4, 6, 8, . . .) and none at odd weight, and (ii) that in each case p = q = 0. In other
words, there appear to be no nontrivial relations between derivatives within the ensemble
outside D0 but in D1. Any negative results must perforce be empirical as one cannot at
the present prove things as ‘simple‘ as the irrationality of ζ(5).

Accordingly, we performed a second computation, this time using only 780-digit arith-
metic and only computing elements of a given weight d, where 4 ≤ d ≤ 20, with m+n = d
and p = q = 0. The PSLQ search then quickly returned the following additional relations:

0 = 163451904U(6, 6, 0, 0)− 280203264U(7, 5, 0, 0) + 175127040U(8, 4, 0, 0)

− 77834240U(9, 3, 0, 0) + 23350272U(10, 2, 0, 0)− 4245819U(11, 1, 0, 0)

0 = − 35143680U(7, 7, 0, 0) + 61501440U(8, 6, 0, 0)− 41000960U(9, 5, 0, 0)

+ 20500480U(10, 4, 0, 0)− 7454720U(11, 3, 0, 0) + 1863680U(12, 2, 0, 0)

− 286719U(13, 1, 0, 0)

0 = 47668008960U(8, 8, 0, 0)− 84743127040U(9, 7, 0, 0)

+ 59320188928U(10, 6, 0, 0)− 32356466688U(11, 5, 0, 0)

+ 13481861120U(12, 4, 0, 0)− 4148264960U(13, 3, 0, 0)

+ 888913920U(14, 2, 0, 0)− 118521871U(15, 1, 0, 0)
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and

0 = − 69888034078720U(9, 9, 0, 0) + 125798461341696U(10, 8, 0, 0)

− 91489790066688U(11, 7, 0, 0) + 53369044205568U(12, 6, 0, 0)

− 24631866556416U(13, 5, 0, 0) + 8797095198720U(14, 4, 0, 0)

− 2345892052992U(15, 3, 0, 0) + 439854759936U(16, 2, 0, 0)

− 51747618627U(17, 1, 0, 0)

0 = − 14799536744824832U(10, 10, 0, 0) + 26908248626954240U(11, 9, 0, 0)

− 20181186470215680U(12, 8, 0, 0) + 12419191673978880U(13, 7, 0, 0)

− 6209595836989440U(14, 6, 0, 0) + 2483838334795776U(15, 5, 0, 0)

− 776199479623680U(16, 4, 0, 0) + 182635171676160U(17, 3, 0, 0)

− 30439195279360U(18, 2, 0, 0) + 3204125819155U(19, 1, 0, 0) (133)

No relations were found when the degree was odd, aside from trivial relations such as
U(7, 8, 0, 0) = U(8, 7, 0, 0). For all weights, except for the above-mentioned relations, no
other relations were found, with exclusion bounds of at least 2.481× 1075.

Remark 4. It is gratifying indeed that our computer facilities are both able to numerically
discover such intriguing relations and to establish all instances obtained via symbolic pro-
cessing. We have mentioned that the suggested conjecture (at least the even-weight part)
has been proven as our Theorem 3; we repeat that even the generating-function algebra
was motivated by numerics—i.e. we had to seek some kind of unifying structure for the U
functions. This in turn made the results for Us accessible. ♦

7.4 Computational notes

We should add that this exercise has underscored the need for additional research and
development in the arena of highly efficient software to compute a wide range of special
functions to arbitrarily high precision, across the full range of complex arguments (not
just for a limited range of real arguments). We relied on our own computer programs and
the ARPREC arbitrary precision software in this study in part because we were unable to
obtain the needed functionality in commercial software.

For instance, neither Maple nor Mathematica was able to numerically evaluate the U1
constants to high precision in reasonable run time, in part because of the challenge of com-
puting polylog and polylog derivatives at complex arguments. The version of Mathematica
that we were using was able to numerically evaluate ∂Lis(z)/∂s to high precision, which is
required in (7), but such evaluations were hundreds of times slower than the evaluation of
Lis(z) itself, and, in some cases, did not return the expected number of correct digits.
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8 Future research directions

One modest research issue is further simplification of log-gamma integrals, say by reduc-
ing in some fashion the examples of Theorem 11. Note that we have optimally reduced
U(M,N) := U(M,N, 0, 0), in the form of explicit ζ-superpositions in a specific ring, and
we have excluded order-preserving linear relations when p, q are non-zero.

Along the same lines, a natural and fairly accessible computational experiment would
venture further outside of D1. It is motivated by the discovery (95). Any exhaustive study
of the ensemble D is impractical until a reliable arbitrary-precision implementation of high-
order derivatives for Lis(x) with respect to s is completed. Hence, in light of (96), (97)
and (98) it makes sense to hunt for all relations of weight at most 20 with total derivative
weight 2, say.

As mentioned above, this study has underscored the need for high-precision evaluations
of special functions in this research. This has spurred one of us (Crandall) to compile a
set of unified and rapidly convergent algorithms (some new, some gleaned from existing
literature) for a variety of special functions, suitable for practical implementation and
efficient for very high-precision computation [22]. Some of these schemes were subsequently
applied in this study. For instance, in regard to the above proposal to search for such as
the ζ ′′(4) conjecture, the formula (54) [22, (51), p. 35] can be used to calculate d-th order

derivatives Li
(d)
s (n) at arbitrary integers n.

But it is clear that substantial additional computational work is required in this arena.
Since, as we have illustrated, the polylogarithms and their relatives are central to a great
deal of mathematics and mathematical physics [4, 16, 28], such an effort is bound to pay
off in the near future.

We conclude by re-emphasising the remarkable effectiveness of our computational strat-
egy. The innocent looking sum U(50, 50, 0, 0) mentioned inter alia can be generalized to an
MTW sum having 100 arbitrary parameters:

ω(s1, . . . , s50 | t1, . . . , t50) :=
∑

m1,...,m50,n1,...,n50 > 0∑50
i=1

mi=
∑50

j=1
nj

50∏
i=1

1

mi
si

50∏
j=1

1

njtj
. (134)

We challenge readers to directly evaluate this sum.
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